
BSTA 620: Probability Lecture Notes

Di Shu, PhD

Department of Biostatistics, Epidemiology and Informatics
University of Pennsylvania

and
Center for Pediatric Clinical Effectiveness

Children’s Hospital of Philadelphia
Di.Shu@pennmedicine.upenn.edu

8th December 2021



Recap by case study

drug A drug B
D+ a b m1
D- c d m2

n1 n2 N

• Let p1 = a/n1 be the estimator for π1 = P (D + |drug = A), and p2 = b/n2
be the estimator for π2 = P (D + |drug = B)

• Odds ratio OR = π1/(1 − π1)
π2/(1 − π2)

, which can be estimated by

ÔR = p1/(1 − p1)
p2/(1 − p2)
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Recap by case study

• Why this estimator makes sense
• 95% confidence interval for ÔR

• Use and misuse of OR
• OR vs. risk ratio (RR)
• Another look at the rare disease condition by examining correlation
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Review

Definition 1.1.1: The set, S, of all possible outcomes of a particular experiment
is called the sample space for the experiment

Definition 1.1.2: An event is any collection of possible outcomes of an
experiment, that is, any subset of S (including S itself)
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Review

Definition 1.2.4: Given a sample space S and an associated sigma algebra B, a
probability function is a function P with domain B that satisfies

• P (A) ≥ 0 for all A ∈ B
• P (S) = 1
• If A1, A2, . . . ∈ B are pairwise disjoint, then P (∪∞

i=1Ai) = ∑∞
i=1 P (Ai)

(countable additivity)

• Items 1-3 are called Kolmogorov axioms of probability
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The calculus of probabilities (consequences of 1.2.4)

Theorem 1.2.8: IF P is a probability function and A is any set in B, then
• P (∅) = 0 where ∅ is the empty set
• P (A) ≤ 1
• P (Ac) = 1 − P (A)
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Review

Theorem 1.2.9: If P is a probability function and A and B are any sets in B,
then

• P (B ∩ Ac) = P (B) − P (A ∩ B)
• P (A ∪ B) = P (A) + P (B) − P (A ∩ B)
• If A ⊂ B, then P (A) ≤ P (B)
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Review

P (∪K
i=1Ai) ≤

K∑
i=1

P (Ai)

• Can see this from Theorem 1.2.9 which implies

P (A ∪ B) ≤ P (A) + P (B)

• Bonferroni’s inequality tells us that if we make the probability of a type I
error on any given comparison α/K, then the FWE will be

P (∪K
i=1{type I error on test i}) ≤

K∑
i=1

α/K = α
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Review

Number of possible arrangements of size r from n objects

Without replacement With replacement

Ordered n!
(n − r)! nr

Unordered
(

n
r

) (
n+r−1

r

)
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Review

Definition 1.3.2: If A and B are events in S, and P (B) > 0, then the
conditional probability of A given B, written as P (A|B), is

P (A|B) = P (A ∩ B)
P (B)
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Review

Theorem 1.3.5 (Bayes’s Rule): Let A1, A2, . . . be a partition of the sample
space, and let B be any set. Then for each i = 1, 2, . . .,

P (Ai|B) = P (B|Ai)P (Ai)∑∞
j=1 P (B|Aj)P (Aj)
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Review

Definition 1.3.7: Two events A and B are statistically independent if

P (A ∩ B) = P (A)P (B)

Definition 1.3.12: A collection of events A1, . . . , An are mutually
independent if for any subcollection Ai1 , . . . , Aik

, we have

P (∩k
j=1Aij

) =
k∏

j=1
P (Aij

)
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Review

Theorem 1.3.9: If A and B are independent events, then the following pairs are
also independent:

• A and Bc

• Ac and B

• Ac and Bc

• Related If two random variables are independent then functions of those
random variables are independent
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Review

Definition 1.4.1: A random variable is a function from a sample space S into
the real numbers

• This is a simplified definition
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Review

Definition 1.5.1: the cumulative distribution function or cdf of a random
variable X, denoted by FX(x), is defined by

FX(x) = PX(X ≤ x) for all x
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Review

Theorem 1.5.10: The following two statements are equivalent:
• The random variables X and Y are identically distributed
• FX(x) = FY (x) for every x
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Review

Definition 1.6.1: The probability mass function (pmf) of a discrete random
variable X is given by

fX(x) = P (X = x) for all x

Definition 1.6.3: The probability density function (pdf) fX(x) of a
continuous random variable X is the non-negative function that satisfies

FX(x) =
∫ x

−∞
fX(t)dt for all x
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Review

Theorem 1.6.5: A function fX(x) is a pdf (or pmf) of a random variable X if
and only if

• fX(x) ≥ 0 for all x

• ∑
x fX(x) = 1 (pmf) or

∫∞
−∞ fX(x)dx = 1 (pdf)
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Review

• Common discrete distribution
• Bernoulli
• Binomial
• Poisson (and Poisson Process)
• Discrete uniform
• Geometric
• Hypergeometric
• Negative binomial
• Multinomial
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Review

• Common continuous distribution
• Normal
• Cauchy
• Uniform
• Exponential
• Gamma
• Weibull
• Beta
• log normal
• Double exponential
• Chi-squared, t, F

• And their relations
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Review

Theorem 2.1.5: Let X have pdf fX(x) and let Y = g(X), where g is a
monotone function. Let X and Y be defined as in Theorem 2.1.3. Suppose that
fX(x) is continuous on X and that g−1(y) has a continuous derivative on Y .
Then the pdf of Y is given by

fY (y) =

 fX(g−1(y))
∣∣∣∣∣ d

dy
g−1(y)

∣∣∣∣∣ y ∈ Y

0 otherwise
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Review

Theorem 2.1.8: Let X have pdf fX(x) and let Y = g(X), and define X as
above. Suppose there exists a partition A0, A1, . . . , Ak, of X such that
P (X ∈ A0) = 0 and fX(x) is continuous on each Ai. Further, suppose there
exist functions g1(x), . . . , gk(x), defined on A1, . . . , Ak, respectively, satisfying

• g(x) = gi(x) for x ∈ Ai

• gi(x) is monotone on Ai

• The set Y = {y : y = gi(x) for some x ∈ Ai} is the same for each
i = 1, . . . , k, and

• g−1
i (y) has a continuous derivative on Y , for each i = 1, 2, . . . , k. Then

fY (y) =


∑k

i=1 fX(g−1
i (y))

∣∣∣∣∣ d

dy
g−1

i (y)
∣∣∣∣∣ y ∈ Y

0 otherwise
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Review

Theorem 2.1.10 (Probability integral transformation): Let X have
continuous cdf FX(x) and define the random variable Y as Y = FX(X). Then
Y ∼ uniform(0, 1), that is, P (Y ≤ y) = y, 0 < y < 1
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Review

Definition 2.2.1: The expected value or mean of a random variable g(X),
denoted E{g(X)}, is

E{g(X)} =
{ ∫∞

−∞ g(x)fX(x)dx if X is continuous∑
x∈X g(x)fX(x) = ∑

x∈X g(x)P (X = x) if X is discrete

provided that the integral or sum exists. If E|g(X)| = ∞, we say that E{g(X)}
does not exist
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Review

• Consider g(X) = X:

Definition: The expected value or mean of a random variable X, denoted
E(X), is

E(X) =
{ ∫∞

−∞ xfX(x)dx if X is continuous∑
x∈X xfX(x) = ∑

x∈X xP (X = x) if X is discrete

provided that the integral or sum exists. If E|X| = ∞, we say that E(X) does
not exist
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Review

Definition 2.3.1: For each integer n, the nth moment of X (or FX(x)), µ′
n, is

µ′
n = E(Xn)

The nth central moment of X, µn, is

µn = E{(X − µ)n}

where µ = µ′
1 = E(X)
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Review

Definition 2.3.2: The variance of a random variable X is its second central
moment, Var(X) = E[{X − E(X)}2]. The positive square root of Var(X) is the
standard deviation of X

• Var(X) = E(X2) − {E(X)}2
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Review

Theorem 2.2.5: Let X be a random variable and let a, b and c be constants.
Then for any functions g1(x) and g2(x) whose expectations exist,

• E(ag1(X) + bg2(X) + c) = aE{g1(X)} + bE{g2(X)} + c

• If g1(x) ≥ 0 for all x, then E{g1(X)} ≥ 0
• If g1(x) ≥ g2(x) for all x, then E{g1(X)} ≥ E{g2(X)}
• If a ≤ g1(x) ≤ b for all x, then a ≤ E{g1(X)} ≤ b

Theorem 2.3.4: If X is a random variable with finite variance, then for any
constants a and b,

Var(aX + b) = a2Var(X)
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Review

Definition 2.3.6: Let X be a random variable with cdf FX . The moment
generating function (mgf) of X (or of FX), denoted by MX(t), is

MX(t) = E(etX)

provided that the expectation exists for t in some neighborhood of 0 (i.e. ∃h > 0
such that, ∀t ∈ (−h, h), E(etX) exists). If the expectation does not exist in a
neighborhood of 0, we say that the mgf does not exist
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Review

Theorem 2.3.7: If X has mgf MX(t), then

E(Xn) = M
(n)
X (0)

where we define
M

(n)
X (0) = dn

dtn
MX(t)

∣∣∣
t=0

That is, the nth moment is equal to the nth derivative of MX(t) evaluated at
t = 0
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Review

Theorem 2.3.11: Let FX(x) and FY (y) be two cdfs all of whose moments exist
• If X and Y have bounded support, then FX(u) = FY (u) for all u if and only

if E(Xr) = E(Y r) for all integers r = 0, 1, 2, . . .

• If the mgfs exist and MX(t) = MY (t) for all t in some neighborhood of 0,
then FX(u) = FY (u) for all u
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Review

Theorem 2.3.12 (Convergence of mgfs): Suppose {Xi, i = 1, 2, . . .} is a
sequence of random variables, each with mgf MXi

(t). Furthermore, suppose that

lim
i→∞

MXi
(t) = MX(t)

for all t in a neighborhood of 0, and MX(t) is an mgf. Then there is a unique cdf
FX whose moments are determined by MX(t) and, for all x where FX(x) is
continuous, we have

lim
i→∞

FXi
(x) = FX(x)

• That is, convergence of mgfs to an mgf (for |t| < h) implies convergence of
the cdfs
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Review

Theorem 2.3.15: For any constants a and b, the mgf of the random variable
aX + b is given by

MaX+b(t) = ebtMX(at)
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Review

• Exponential families A family of pdfs or pmfs is called an exponential
family if it can be expressed as

f(x; θ) = h(x)c(θ) exp
(

k∑
i=1

wi(θ)ti(x)
)

where h(x) ≥ 0 and t1(x), . . . , tk(x) are real-valued functions of the
observation x (they cannot depend on θ), and c(θ) ≥ 0 and
w1(θ), . . . , wk(θ) are real-valued functions of the possibly vector-valued
parameter θ (they cannot depend on x)
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Review

Definition 3.5.5: Let f(x) be any pdf. Then for any µ ∈ (−∞, ∞) and any
σ > 0, the family of pdfs (1/σ)f((x − µ)/σ), indexed by the parameter (µ, σ), is
called the location-scale family with standard pdf f(x); µ is called the
location parameter and σ is called the scale parameter
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Review

Definition 4.1.1: An n-dimensional random vector is a function from a
sample space S into Rn, n-dimensional Euclidean space
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Review

Definition 4.1.3: Let (X, Y ) be a discrete bivariate random vector. Then
function f(x, y) from R2 into R defined by f(x, y) = P (X = x, Y = y) is called
the joint probability mass function or joint pmf of (X, Y )

• To be clearer, the notation fX,Y (x, y) will be used
• Use the joint pmf to calculate probability of any event:

P{(X, Y ) ∈ A} =
∑

(x,y)∈A

f(x, y)
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Review

Theorem 4.1.6: Let (X, Y ) be a discrete bivariate random vector with
joint pmf fX,Y (x, y). Then the marginal pmfs of X and Y , fX(x) and fY (y),
respectively, are given by

fX(x) =
∑
y∈R

fX,Y (x, y)

and
fY (y) =

∑
x∈R

fX,Y (x, y)
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Review

Definition 4.1.10: A function f(x, y) from R2 into R is called a joint
probability density function or joint pdf of the continuous bivariate random
vector (X, Y ) if, for every A ⊂ R2

P ((X, Y ) ∈ A) =
∫

A

∫
f(x, y)dxdy

• Expectation of a function of a bivariate continuous random variable

E{g(X, Y )} =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)f(x, y)dxdy
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Review

• The marginal probability density functions of X and Y are given by

fX(x) =
∫ ∞

−∞
f(x, y)dy, −∞ < x < ∞

fY (y) =
∫ ∞

−∞
f(x, y)dx, −∞ < y < ∞

• Any function f(x, y) ≥ 0, ∀(x, y) ∈ R2 with

1 =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)dxdy

is the joint pdf of some continuous bivariate random vector (X, Y )
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Review

Definition 4.2.1: Let (X, Y ) be a discrete bivariate random vector with joint
pmf f(x, y) and marginal pmfs fX(x) and fY (y). For any x such that
P (X = x) = fX(x) > 0, the conditional pmf of Y given that X = x is the
function of y denoted by f(y|x) and defined by

f(y|x) = P (Y = y|X = x) = f(x, y)
fX(x)

For any y such that P (Y = y) = fY (y) > 0, the conditional pmf of X given
that Y = y is the function of x denoted by f(x|y) and defined by

f(x|y) = P (X = x|Y = y) = f(x, y)
fY (y)
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Review

• Define conditional expected value of g(Y ) given X = x as

E{g(Y )|x} =
∑

y

g(y)f(y|x)
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Review

Definition 4.2.3: Let (X, Y ) be a continuous bivariate random vector with joint
pdf f(x, y) and marginal pdfs fX(x) and fY (y). For any x such that fX(x) > 0,
the conditional pdf of Y given that X = x is the function of y denoted by
f(y|x) and defined by

f(y|x) = f(x, y)
fX(x)

For any y such that fY (y) > 0, the conditional pdf of X given that Y = y is
the function of x denoted by f(x|y) and defined by

f(x|y) = f(x, y)
fY (y)
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Review

• Define conditional expected value of g(Y ) given X = x as

E{g(Y )|x} =
∫ ∞

−∞
g(y)f(y|x)dy
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Review

• The variance of the probability distribution described by f(y|x), denoted by
Var(Y |x), is called the conditional variance of Y given X = x

Var(Y |x) = E(Y 2|x) − {E(Y |x)}2
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Review

Definition 4.2.5: Let (X, Y ) be a bivariate random vector with joint pdf or pmf
f(x, y) and marginal pdfs or pmfs fX(x) and fY (y). Then X and Y are called
independent random variables if for every x ∈ R and y ∈ R,

f(x, y) = fX(x)fY (y)
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Review

Lemma 4.2.7: Let (X, Y ) be a bivariate random vector with joint pdf or pmf
f(x, y). Then X and Y are independent random variables if and only if there
exist functions g(x) and h(y) such that, for every x ∈ R and y ∈ R,

f(x, y) = g(x)h(y)
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Review

Theorem 4.2.10: Let X and Y be independent random variables.
• For any A ⊂ R and B ⊂ R,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

that is, the events {X ∈ A} and {Y ∈ B} are independent events
• Let g(x) be a function only of x and h(y) be a function only of y. Then

E{g(X)h(Y )} = E{g(X)} · E{h(Y )}
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Review

Theorem 4.2.12: Let X and Y be independent random variables with moment
generating functions MX(t) and MY (t). Then the moment generating function
of the random variable Z = X + Y is given by

MZ(t) = MX(t)MY (t)
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Review

Theorem 4.2.14: Let X ∼ n(µ, σ2) and Y ∼ n(γ, τ 2) be independent normal
random variables. Then the random variable Z = X + Y has a n(µ + γ, σ2 + τ 2)
distribution
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Review
• Bivariate transformations (see previous notes for details)

• Discrete case

fU,V (u, v) = P (U = u, V = v) = P ((X, Y ) ∈ Auv) =
∑

(x,y)∈Auv

fX,Y (x, y)

• Continous case (assuming 1 to 1 transformation)

fU,V (u, v) =
{

fX,Y (h1(u, v), h2(u, v))|J | (u, v) ∈ B
0 otherwise

• Continous case (not 1 to 1)

fU,V (u, v) =
k∑

i=1
fX,Y (h1i(u, v), h2i(u, v))|Ji|
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Review

Theorem 4.3.5: Let X and Y be independent random variables. Let g(X) be a
function only of X and h(Y ) be a function only of Y . Then the random variables
U = g(X) and V = h(Y ) are independent
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Review

Theorem 4.4.3: If X and Y are any two random variables, then

E(X) = E{E(X|Y )}

provided that the expectations exist

Theorem 4.4.7 (Conditional variance identity): For any two random
variables X and Y ,

Var(X) = E{Var(X|Y )} + Var{E(X|Y )}

provided that the expectations exist
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Review

Definition 4.5.1: The covariance of X and Y is the number defined by

Cov(X, Y ) = E{(X − µX)(Y − µY )}

Theorem 4.5.3: Cov(X, Y ) = E(XY ) − µXµY

Definition 4.5.2: The correlation of X and Y is the number defined by

ρX,Y = Cov(X, Y )
σXσY

The value ρX,Y is also called the correlation coeffcient
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Review

Theorem 4.5.5: If X and Y are independent random variables, then
Cov(X, Y ) = 0 and ρX,Y = 0

• Independence implies 0 covariance, but not the other way around
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Review

Theorem 4.5.6: If X and Y are any two random variables and a and b are any
two constants, then

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y )

If X and Y are independent random variables, then

Var(aX + bY ) = a2Var(X) + b2Var(Y )
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Review

Theorem 4.5.7: For any random variables X and Y ,
• −1 ≤ ρXY ≤ 1
• |ρXY | = 1 if and only if there exist numbers a ̸= 0 and b such that

P (Y = aX + b) = 1. If ρXY = 1, then a > 0, and if ρXY = −1, then a < 0
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Review

• Multivariate distributions (see previous notes for details)
• joint distribution
• marginal distribution
• conditional distribution
• expected value
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Review

Definition 4.6.5: Let X1, . . . , Xn be random vectors with joint pdf or pmf
f(x1, . . . , xn). Let fXi

(xi) denote the marginal pdf or pmf of Xi. Then
X1, . . . , Xn are called mutually independent random vectors if, for every
(x1, . . . , xn),

f(x1, . . . , xn) = fX1(x1) · · · fXn(xn) =
n∏

i=1
fXi

(xi)

• If Xis are all one-dimensional, then X1, . . . , Xn are called mutually
independent random variables
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Review

Theorem 4.6.6 (Generalization of Theorem 4.2.10): Let X1, . . . , Xn be
mutually independent random variables. Let g1, . . . , gn be real-valued
functions such that gi(xi) is a function only of xi, i = 1, . . . , n. Then

E{g1(X1) · · · gn(Xn)} = E{g1(X1)} · · · E{gn(Xn)}
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Review

Theorem 4.6.7 (Generalization of Theorem 4.2.12): Let X1, . . . , Xn be
mutually independent random variables with mgfs MX1(t), . . . , MXn(t). Let
Z = X1 + · · · + Xn. Then the mgf of Z is

MZ(t) = MX1(t) · · · MXn(t)

In particular, if X1, . . . , Xn all have the same distribution with mgf MX(t), then

MZ(t) = {MX(t)}n
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Review

Theorem 4.6.11 (Generalization of Lemma 4.2.7): Let X1, . . . , Xn be
random vectors. Then X1, . . . , Xn are mutually independent random vectors if
and only if there exist functions gi(xi), i = 1, . . . , n, such that the joint pdf or
pmf of (X1, . . . , Xn) can be written as

f(x1, . . . , xn) = g1(x1) · · · gn(xn)
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Review

Theorem 4.6.12 (Generalization of Theorem 4.3.5): Let X1, . . . , Xn be
independent random vectors. Let gi(xi) be a function only of xi, i = 1, . . . , n.
Then the random variables Ui = gi(Xi), i = 1, . . . , n, are mutually independent
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Review

• Chebyshev’s inequality
• Markov inequality
• Normal tail probability
• Hölder’s inequality
• Cauchy-Schwarz inequality
• Covariance inequality
• Minkowski’s inequality
• Jensen’s inequality
• Inequality for means

Shu, D (Penn&CHOP) 64 / 90



Review

Definition 5.1.1: The random variables X1, . . . , Xn are called a random
sample of size n from the population f(x) if X1, . . . , Xn are mutually
independent random variables and the marginal pdf or pmf of each Xi is the
same function f(x). Alternatively, X1, . . . , Xn are called independent and
identically distributed random variables with pdf or pmf f(x). This is
commonly abbreviated to iid random variables
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Review

Definition 5.2.1: Let X1, . . . , Xn be a random sample of size n from a
population and let T (x1, . . . , xn) be a real-valued or vector-valued function
whose domain includes the sample space of (X1, . . . , Xn). Then the random
variable or random vector Y = T (X1, . . . , Xn) is called a statistic. The
probability distribution of a statistic Y is called the sampling distribution of Y
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Definition 5.2.2: The sample mean is the arithmetic average of the values in
a random sample. It is usually denoted by

X̄ = 1
n

n∑
i=1

Xi

Definition 5.2.3: The sample variance is the statistic defined by

S2 = 1
n − 1

n∑
i=1

(Xi − X̄)2

The sample standard deviation is the statistic defined by S =
√

S2
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Theorem 5.2.6: Let X1, . . . , Xn be a random sample from a population with
mean µ and variance σ2 < ∞. Then

• E(X̄) = µ (unbiasedness)

• Var(X̄) = σ2

n
• E(S2) = σ2 (unbiasedness)
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Review

• Important factoids Let X1, . . . , Xn be random variables whose
expectations and variances exist

• E(X1 + · · · + Xn) =
∑n

i=1 E(Xi)
• Var(X1 + · · · + Xn) =

∑n
i=1 Var(Xi) +

∑
i ̸=j Cov(Xi, Xj)

• Note for a random sample,

Var(X1 + · · · + Xn) = nVar(X1)

• Note for a previous example of sampling without replacement,

Var(X1 + · · · + Xn) = nVar(X1) + n(n − 1)Cov(X1, X2)
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Review

Theorem 5.2.7: Let X1, . . . , Xn be a random sample from a population with
mgf MX(t). Then the mgf of the sample mean is

MX̄(t) = {MX(t/n)}n
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Review

• When the mgf of X̄ is not recognizable, or the population mgf does not
exist, the transformation method might be used. In such cases, the following
convolution formula is useful

Theorem 5.2.9: If X and Y are independent, continuous random variables
with pdfs fX(x) and fY (y), then the pdf of Z = X + Y is

fZ(z) =
∫ ∞

−∞
fX(w)fY (z − w)dw
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Theorem 5.3.1: Let X1, . . . , Xn be a random sample from a n(µ, σ2)
distribution, and let X̄ = (1/n)∑n

i=1 Xi and S2 = {1/(n − 1)}∑n
i=1(Xi − X̄)2.

Then
• X̄ and S2 are independent random variables
• X̄ ∼ n(µ, σ2/n)
• (n − 1)S2/σ2 ∼ χ2

n−1
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Review

Definition 5.4.1: The order statistics of a random sample X1, . . . , Xn are the
sample values placed in ascending order. They are denoted by X(1), . . . , X(n)
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Theorem 5.4.4: Let X(1), . . . , X(n) denote the order statistics of a random
sample, X1, . . . , Xn, from a continuous population with cdf FX(x) and pdf
fX(x). Then the pdf of X(j) is

fX(j)(x) = n!
(j − 1)!(n − j)!fX(x){FX(x)}j−1{1 − FX(x)}n−j

• Proof: FX(j)(x) = ∑n
k=j

(
n
k

)
{FX(x)}k{1 − FX(x)}n−k and then differentiate
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Theorem 5.4.6: Let X(1), . . . , X(n) denote the order statistics of a random
sample, X1, . . . , Xn, from a continuous population with cdf FX(x) and pdf
fX(x). Then the joint pdf of X(i) and X(j), 1 ≤ i < j ≤ n, is

fX(i),X(j)(u, v)

= n!
(i − 1)!(j − 1 − i)!(n − j)!fX(u)fX(v){FX(u)}i−1

×{FX(v) − FX(u)}j−1−i{1 − FX(v)}n−j

for −∞ < u < v < ∞
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Review

Xn
p−→ X: A sequence of random variables, X1, X2, . . ., converges in

probability to a random variable X if, for every ϵ > 0,

lim
n→∞

P (|Xn − X| < ϵ) = 1

Xn
a.s.−→ X: A sequence of random variables, X1, X2, . . ., converges almost

surely to a random variable X if, for every ϵ > 0,

P ( lim
n→∞

|Xn − X| < ϵ) = 1
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Definition 5.5.10: A sequence of random variables, X1, X2, . . . converges in
distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(x) is continuous. We also write this

Xn
d−→ X
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Theorem 5.5.2 (Weak Law of Large Numbers): Let X1, X2, . . .be iid
random variables with E(Xi) = µ and Var(Xi) = σ2 < ∞. Define
X̄n = (1/n)∑n

i=1 Xi. Then, for every ϵ > 0,

lim
n→∞

P (|X̄n − µ| < ϵ) = 1

That is, X̄n converges in probability to µ:

X̄n
p−→ µ

We say that X̄n is consistent for µ
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Theorem 5.5.9 (Strong Law of Large Numbers): Let X1, X2, . . .be iid
random variables with E(Xi) = µ and Var(Xi) = σ2 < ∞. Define
X̄n = (1/n)∑n

i=1 Xi. Then, for every ϵ > 0,

P ( lim
n→∞

|X̄n − µ| < ϵ) = 1

That is,
X̄n

a.s.−→ µ
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Theorem 5.5.14 (Central Limit Theorem): Let X1, X2, . . . be a sequence of
iid random variables whose mgfs exist in a neighborhood of 0 (i.e. MXi(t) exists
for |t| < h, for some positive h). Let E(Xi) = µ and Var(Xi) = σ2 > 0 (Both µ
and σ2 are finite because the mgf exists). Define X̄n = (1/n)∑n

i=1 Xi. Let
Gn(x) denote the cdf of

√
n(X̄n − µ)/σ. Then, for any x ∈ (−∞, ∞),

lim
n→∞

Gn(x) =
∫ x

−∞

1√
2π

e−y2/2dy

That is, √
n(X̄n − µ)/σ

d−→ n(0, 1)
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Theorem 5.5.15 (Stronger form of the CLT): Let X1, X2, . . . be a sequence
of iid random variables with E(Xi) = µ and 0 < Var(Xi) = σ2 < ∞. Define
X̄n = (1/n)∑n

i=1 Xi. Let Gn(x) denote the cdf of
√

n(X̄n − µ)/σ. Then, for
any x ∈ (−∞, ∞),

lim
n→∞

Gn(x) =
∫ x

−∞

1√
2π

e−y2/2dy

That is, √
n(X̄n − µ)/σ

d−→ n(0, 1)
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• Continuous mapping theorem/Mann-Wald mapping theorem
Suppose that X1, X2, . . .is a sequence of random variables and f : R → R
is a Borel function (includes continuous functions) whose set D of
discontinuities is such that ω : X(ω) ∈ D ∈ F and P (X ∈ D) = 0. If Xn

converges to X either
• almost surely
• in probability, or
• in distribution

Then g(Xn) converges to g(X) in the same sense
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Theorem 5.5.17 (Slutsky’s Theorem): If Xn
d−→ X and Yn

p−→ a, where a
is a constant, then

• XnYn
d−→ aX

• Xn + Yn
d−→ X + a
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Theorem 5.5.24 (Delta Method): Let Yn be a sequence of random variables
that satisfies

√
n(Yn − θ) d−→ n(0, σ2). For a given function g and a specific

value of θ, suppose that g′(θ) exists and is not 0. Then
√

n{g(Yn) − g(θ)} d−→ n(0, σ2{g′(θ)}2)

Theorem 5.5.26 (Second-order Delta Method): Let Yn be a sequence of
random variables that satisfies

√
n(Yn − θ) d−→ n(0, σ2). For a given function g

and a specific value of θ, suppose that g′(θ) = 0 and g′′(θ) exists and is not 0.
Then

n{g(Yn) − g(θ)} d−→ σ2
{

g′′(θ)
2

}
χ2

1
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• Let T = (T1, . . . , Tk)T with mean µ and variance-covariance matrix ΣT . Let
Q = G(T ) = (g1(T ), . . . , gm(T ))T . Then

E(Q) ≈ G(µ) and Var(Q) ≈ H(µ)ΣT H(µ)T

where H(µ) = H(t)|t=µ and

H(t) =


∂g1(t)

∂t1
. . .

∂g1(t)
∂tk... . . . ...

∂gm(t)
∂t1

. . .
∂gm(t)

∂tk


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• Final exam focuses on materials after the midterm (after Section 3.3)
• A couple of notes (1/3)

• E(·)
• is sum or integration

includes mean, variance, moments and mgfs
• handy calculation of E(X) and Var(X) using hierarchy

• Derive marginal and conditional pdfs/pmfs from a joint pdf/pmf
• Univariate, bivariate, or multivariate transformations

• discrete case or continuous case?
• do we have 1 to 1 transformation?
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• A couple of notes (2/3)
• mgfs can be used to

• derive moments
• derive variance through 1st and 2nd moments
• name/recognize a distribution (note: simplified derivation for sum of

independent r.v.s)
• examine convergence in distribution

• Independence of r.v.s
• is verified when both joint density and support region factor
• implies the independence of events and functions of r.v.s.
• implies that, expectation of product = product of expectation
• implies that covariance and correlation = 0; the opposite direction is true for

normal r.v.s but does not generally hold

Shu, D (Penn&CHOP) 88 / 90



Review

• A couple of notes (3/3)
• Relations between r.v.s (e.g. square of standard normal is chi-square)
• Random sample means iid
• Sample mean and sample variance are unbiased. More properties when

assuming normal distribution
• Order statistics (min, max and more)
• Probabilistic inequalities and applications
• Three modes of convergence and their relations
• How to apply LLN, CLT and Delta method and when?
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• Always double check assumptions when applying any theorems or properties
(e.g. MX+Y (t) = MX(t)MY (t) require X and Y be independent)

• Familiarity with common distributions and their relations is useful and
sometimes can save time

• Useful tools: proof by contradiction, induction, recursive relation, recognize
a kernel, integration (dxdy or dydx, polar coordinates), geometric argument
(e.g. find the area), inequalities, Taylor expansion, etc.

• Pay attention to support region
• Go back to definitions if no clue; they are fundamental and often the first

step of solutions
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